Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yi-Min Jiang, ${ }^{\text {a }}{ }^{\text {* Jin-Hua Cai, }}{ }^{\text {a }}$ Zhi-Min Liu ${ }^{\text {a }}$ and Xu-Hui Liu ${ }^{\text {b }}$

${ }^{\text {a College of Chemistry and Chemical }}$ Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemical Engineering, Hechi University, Yizhou Guangxi 546300, People's Republic of China

Correspondence e-mail: cjhzse@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.041$
$w R$ factor $=0.085$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Potassium tris(2-aminoethanesulfonato$\left.\kappa^{2} N, O\right)$ nickelate(II)

The hydrothermal reaction of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{KOH}$ and taurine produced the title compound, $\mathrm{K}\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NSO}_{3}\right)_{3}\right]$. The $\mathrm{Ni}^{\mathrm{II}}$ atom is chelated by the three taurinate ligands in a deformed octahedral geometry and in a facial manner. Each taurinate ligand bridges two K^{+}ions via its sulfonate group, forming a three-dimensional framework.

Comment

The design and synthesis of novel coordination complexes have attracted considerable attention (Subramanian \& Zaworotko, 1995), due to applications in many areas (Zhao et al., 2001). Taurine, an amino acid containing sulfur, is indispensable to human beings and has important physiological functions. Recently, many Schiff base complexes derived from taurine have been reported (Zhang \& Jiang, 2002; Zeng et al., 2003; Jiang et al., 2004; Zhang et al., 2005). On the other hand, few taurinate complexes have been reported, because organosulfonates, $\left(\mathrm{RSO}_{3}\right)^{-}$, are typically employed as 'non-coordinating' anions. This has prompted us to search for such complexes. We report here the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I) consists of one $\mathrm{Ni}^{\mathrm{II}}$ atom, three taurinate ligands and one K^{+}ion. The Ni atom is bonded to three O and three N atoms in a slightly deformed octahedral geometry (Fig. 1 and Table 1). The Ni atom forms sixmembered chelate rings $\left(\mathrm{NiNC}_{2} \mathrm{SO}\right)$ with each taurinate ligand. This is a facial isomer. Each sulfonate group of the taurinate ligand takes part in the formation of a hydrogen

Received 15 March 2005
Accepted 7 April 2005
Online 16 April 2005

Figure 1
The asymmetric unit of the complex anion in (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
bond (Table 2) with the amino group of a neighbouring ligand in the complex.

The coordination modes of the sulfonate group have been much less well studied. The sulfonate group, as a tetrahedral oxygen-donating building block, may bridge sites of a coordination polymer chain to dictate the interchain geometry. The most common coordination modes of the sulfonate group are monodentate and μ_{2}-bridging, while μ_{3}-bridging is very rare. The coordination mode of the sulfonate group in (I) is $\mu_{3^{-}}$ bridging, which makes the $\mathrm{S}-\mathrm{O}(-\mathrm{Ni})$ bonds [1.485 (4)1.496 (4) Å] much longer than those previously reported [$\mathrm{S}-$ $\mathrm{O}(-\mathrm{Cu}) 1.453$ (3) and 1.456 (3) Å; Zhong et al., 2003; Cai et al., 2004]. The $\mathrm{S}=\mathrm{O}(\cdots \mathrm{K})$ bonds [1.458 (4) -1.470 (4) \AA] are slightly longer than the uncoordinated $\mathrm{S}=\mathrm{O}$ bond in taurine [1.446 (12)-1.457 (13) Å; Zhang \& Jiang, 2002].

The K atom is surrounded by six O atoms from different taurinate ligands in a triangular prismatic geometry (Fig. 2). Atoms $\mathrm{O} 2{ }^{\mathrm{iiii}}, \mathrm{O} 8^{\mathrm{iv}}$ and O 9 are in the upper plane, while atoms $\mathrm{O} 3^{\mathrm{i}}, \mathrm{O}^{\mathrm{ii}}$ and O^{v} are located in the lower plane [symmetry codes: (i) $-\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z$; (ii) $-\frac{1}{2}-x, \frac{1}{2}+y, z-\frac{1}{2}$; (iii) $-x$, $2-y, \frac{1}{2}+z$; (iv) $-x, 2-y, z-\frac{1}{2}$; (v) $x-\frac{1}{2}, \frac{3}{2}-y, z$.] The title complex forms a three-dimensional structure through the $\mathrm{K} \cdots \mathrm{O}$ linkage. The $\mathrm{K} \cdots \mathrm{O}$ distances are in the range 2.693 (4)-2.866 (4) A, suggesting weak electrostatic interactions.

Experimental

A solution of taurine (1.5 mmol) and $\mathrm{KOH}(2.0 \mathrm{mmol})$ in anhydrous methanol $(10 \mathrm{ml})$ was added slowly to a solution of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (0.5 mmol) in anhydrous methanol $(10 \mathrm{ml})$. After stirring for 10 min , dimethylformamide (5 ml) was added slowly to the mixture. The mixture was then placed in a 25 ml Teflon-lined stainless steel reactor

Figure 2
The coordination environment of the K^{+}ion in (I), with displacement ellipsoids at the 30% probability level. [Symmetry codes: (A) $-\frac{1}{2}-x, \frac{1}{2}+$ $y, \frac{1}{2}+z ;$ (B) $-\frac{1}{2}-x, \frac{1}{2}+y, z-\frac{1}{2}$; (C) $-x, 2-y, \frac{1}{2}+z ;(\mathrm{D})-x, 2-y, z-\frac{1}{2}$; (E) $x-\frac{1}{2}, \frac{3}{2}-y, z$.]
and heated at 370 K for 6 d . Thereafter, the reactor was slowly cooled to room temperature and green prism-shaped crystals of (I) suitable for X-ray diffraction were obtained in a yield of 65%. Analysis found (\%): C 15.34, H 1.68, N 8.95, S 20.43; required (\%): C 15.31, H 1.71, N 8.93, S 20.46. IR (KBr, v, $\left.\mathrm{cm}^{-1}\right)$: 1032.7, 1164.2, $1233.3\left(-\mathrm{SO}_{3}\right)$, 3263.8, $3305.0(\mathrm{~N}-\mathrm{H})$.

Crystal data

$\mathrm{K}\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NSO}_{3}\right)_{3}\right]$
$M_{r}=470.22$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=10.712$ (9) \AA 。
$b=15.593$ (13) \AA
$c=9.556$ (8) A
$V=1596(2) \AA^{3}$
$Z=4$
$D_{x}=1.957 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku Mercury CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.674, T_{\text {max }}=0.891$
9501 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.085$
$S=1.07$
2663 reflections
208 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0388 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

Mo $K \alpha$ radiation
Cell parameters from 4244 reflections
$\theta=2.1-25.0^{\circ}$
$\mu=1.92 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.14 \times 0.10 \times 0.06 \mathrm{~mm}$

2663 independent reflections
2455 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-18 \rightarrow 17$
$l=-11 \rightarrow 11$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.50 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.41 \mathrm{e}^{-3}$
Extinction correction: none
Absolute structure: Flack (1983),
with 1156 Friedel pairs
Flack parameter: 0.01 (2)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Ni1-N1	2.110 (4)	$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {i }}$	2.806 (4)
Ni1-N2	2.108 (4)	$\mathrm{K} 1-\mathrm{O}^{\text {ii }}$	2.693 (4)
Ni1-N3	2.120 (5)	$\mathrm{K} 1-\mathrm{O} 5^{\text {iii }}$	2.791 (4)
Ni1-O1	2.126 (4)	$\mathrm{K} 1-\mathrm{O}^{\text {iv }}$	2.866 (4)
Ni1-O4	2.130 (4)	$\mathrm{K} 1-\mathrm{O} 8{ }^{\text {v }}$	2.826 (4)
Ni1-O7	2.105 (4)	K1-O9	2.702 (4)
O7-Ni1-N2	92.05 (17)	N1-Ni1-O1	95.74 (16)
O7-Ni1-N1	174.01 (16)	N3-Ni1-O1	90.10 (17)
N2-Ni1-N1	89.62 (17)	O7-Ni1-O4	83.85 (15)
O7-Ni1-N3	91.56 (17)	N2-Ni1-O4	93.88 (16)
N2-Ni1-N3	92.13 (18)	N1-Ni1-O4	90.30 (16)
N1-Ni1-N3	94.12 (18)	N3-Ni1-O4	172.56 (16)
O7-Ni1-O1	82.36 (14)	O1-Ni1-O4	83.50 (14)
N2-Ni1-O1	174.03 (15)		

(iv) $x-\frac{1}{2},-y+\frac{3}{2}, z$; (v) $-x,-y+2, z-\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1D \cdots O6	0.90	2.36	$3.190(6)$	154
N2-H2D \cdots O8	0.90	2.24	$3.076(6)$	154
N3-H3D \cdots O2	0.90	2.41	$3.161(6)$	140

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-$ $\mathrm{H}=0.90 \AA$) and included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of the Guangxi Chuang Autonomous Region of the People's Republic of China (grant No. 0339034) and the Science Research Foundation of Guangxi Universities of the People's Republic of China.

References

Cai, J. H., Jiang, Y. M., Wang, X. J. \& Liu, Z. M. (2004). Acta Cryst. E60, m1659-m1661.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jiang, Y. M., Zeng, J. L. \& Yu, K. B. (2004). Acta Cryst. C60, m543-m545.
Rigaku (2000). CrystalClear. Version 1.35. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Subramanian, S. \& Zaworotko, M. (1995). Angew. Chem. Int. Ed. Engl. 34, 2127-2129.
Zeng, J. L., Jiang, Y. M. \& Yu, K. B. (2003). Acta Cryst. E59, m1137-m1139. Zhang, S. H. \& Jiang, Y. M. (2002). Chin. J. Inorg. Chem. 18, 497-500.
Zhang, S. H., Jiang, Y. M. \& Yu, K. B. (2005). Acta Cryst. E61, m209-m211.
Zhao, Y. J., Hong, M. C., Liang, Y. C., Cao, R., Li, W. J., Weng, J. B. \& Lu, S. F. (2001). Chem. Commun. pp. 1020-1024.

Zhong, F., Jiang, Y. M. \& Zhang, S. H. (2003). Chin. J. Inorg. Chem. 6, 559-602.

